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Hence, the synchronous generator real power output can be represented as 
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Fig. 2.1: Single line diagram of the SMIB system 

 
 

Till now the equivalent electrical representation of the synchronous machine is 

discussed. The synchronous machine also has a mechanical system which has to be 

modeled. The prime mover gives mechanical energy to the generator rotor and in turn 

the generator converts the mechanical energy into electrical energy through magnetic 

coupling. The dynamics of a rotational mechanical system can be represented as 
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where, 2kg.mJ  is the inertia constant of the rotating machine. The mechanical input 

torque due to the prime mover is represented as N.mmT  and the electrical torque, 

acting against the mechanical input torque, is represented by N.meT .  The angle m  

is the mechanical angle of the rotor field axis with respect to the stator reference or 

fixed reference frame. As the rotor is continuously rotating at synchronous speed in 
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steady state m  will also be continuously varying with respect to time.  To make the 

angle  m  constant in steady state we can measure this angle with respect to a 

synchronously rotating reference instead of a stationary reference. Hence, we can 

write   
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Where, m  is the angle between the rotor field axis and the reference axis rotating 

synchronously at rpsms .  If we differentiate (2.5) with respect to time we get 
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But, the rate of change of the rotor mechanical angle m  with respect to time is 

nothing but the speed of the rotor. Hence, 
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Substituting, (2.8) in (2.6) we get 
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Similarly, substituting (2.7) in (2.4) we get 
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if we multiply with m  on both the side of (2.10) and noting that torque multiplied by 

speed gives power, we can write (2.10) as 
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 Now multiply with the term 
1

2 ms  on both the sides of (2.11) and divide the entire 

equation with the base MVA ( BS ), in order to express the equation in per unit, lead to  
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Let us define a new parameter named as machine inertia constant 
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If we assume that on left hand side of (2.12)  m ms   as the variation of the speed, 

even during transients, from synchronous speed is quite less. This assumption does 

not mean that the speed of the rotor has reached the synchronous speed but 

instead 21 1

2 2ms m msJ J   . With this assumption if we substitute (2.13) in (2.12) we 

get 
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andm ms   are expressed in mechanical radians and mechanical radians per second, 

in order to convert them in to electrical radians and electrical radians per second 

respectively we have to take the number of poles ( P ) of the synchronous machine 

rotor into consideration. Hence, the electrical angle and electrical speed can be 

represented as 

 

H = Kinetic Energy / MVA
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Substituting (2.3) and (2.15) into (2.14) we get  
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Equation (2.16) is called as swing equation. Equation (2.16), assuming all the 

parameters expressed in per units, can also be written as 
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Where,  / 2 mP  . In can be observed from (2.17) that, if max sinmP P  then there 

will be no speed change and there will be no angle change. But, if max sinmP P   due 

to disturbance in the system then either the speed increase or decrease with respect to 

time. Let us take the case of max sinmP P  , there is more input mechanical power 

than the electrical power output. In this case, as the energy has to be conserved 

difference between the input and output powers will lead to increase in the kinetic 

energy of the rotor and speed increases. Similarly, if max sinmP P   then, the input 

power is less than the required electrical power output. Again the balance power, to 

meet the load requirement, is drawn from the kinetic energy stored in the rotor due to 

which the rotor speed decreases.  
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